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A numerical method for integrating the unsteady two-dimensional boundary- 
layer equations using a second-order-accurate implicit method, which allows for 
arbitrary mesh spacing in the space and time variables, is developed. A unique 
feature of the method is the use of an asymptotic solution valid at the downstream 
end of the integration mesh which permits backflow to be taken into account. 
Newton’s iterative technique is used to solve the nonlinear finite-difference 
equations a t  each computation step, using a rapid algorithm for solving the 
resulting linearized equations. The method is applied to a flow which is periodic 
in time and contains regions of backflow. The numerical computations are 
compared with known numerical and asymptotic solutions and the agreement 
is excellent. 

1. Introduction 
This paper is concerned with numerical solutions of the unsteady laminar 

boundary-layer equations for flows over a semi-infinite flat plate which is parallel 
to the free stream. The fluid velocity outside the boundary layer is assumed 
uniform and a periodic function of time. The periodicity gives rise to regions of 
backflow near the wall, and by using an asymptotic solution, valid a t  the down- 
stream end of the integration mesh, a method is devised for allowing the backflow 
to influence the motion upstream. These problems arise in the flow over a 
helicopter blade and are related to the fluid motion in the human aorta. 

The numerical method presented here is a fast and versatile second-order- 
accurate implicit technique which allows for arbitrary mesh spacing in the space 
and time variables. The nonlinear finite-difference equations a t  each computa- 
tion step are solved using Newton’s iterative method, and a rapid algorithm for 
solving the resulting linearized equations is given. Although no results are 
presented here for flows without backflow, the method has also been used in 
these cases with excellent results (Phillips 1972). Certain similarities exist 
between the numerical method presented here and that of Hall (1969b). The 
main differences are as follows. (i) The method presented here allows for a variable 
mesh size across the boundary layer, making it especially suitable for studying 
double boundary-layer structures. (ii) Our method solves the nonlinear fhite- 
difference equations by Newton’s technique rather than by a fixed-point method. 
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(iii) The linear system of equations which arise with each Newton iteration are 
solved using an algorithm rather than by factorization into upper and lower 
triangular matrices. A considerable amount of computing time is saved by this 
method because it is not necessary to operate on the zero elements which appear 
in the matrices. 

A motion is considered forwhich the fluid velocity outside the boundary layer is 
a periodic function of time f given by De = go + cl sin 63, where 0 is the frequency, 
and with \A\  = lU,/Uol < 1, so that no backflow occurs at  the leading edge. The 
motion is started impulsively from rest, and only periodic solutions which would 
result for t+co are sought. It is assumed that unique periodic solutions exist, 
independent of initial conditions. This is tested numerically by choosing different 
initial conditions. 

This problem has been considered by several authors (e.g. Lighthill 1954; 
Ackerberg & Phillips 1972 and their references) when A is small (hereafter 
referred to as the ' small parameter ' solution). For such cases the nonlinear partial 
differential equations can be reduced to linear partial differential equations 
using standard perturbation techniques. For larger values of J A  I < 1 and G+ oc), 
the problem was considered by Lin (1957) and Gibson (1957). Using time 
averages of the governing equations, Lin was able to separate the boundary-layer 
solution into a steady and fluctuating part, and he deduced the double boundary- 
layer structure valid far downstream, which, to first order, has an inner layer 
which corresponds to a Stokes shear-wave motion, while the outer layer is a 
modified Blasius flow which carries the mean flow downstream. Gibson also 
studied this problem when ae is a slowly varying function of time (ZS small). His 
analysis was confined to the case in which IA I < 1. 

Numerical solutions are obtained and compared with a co-ordinate expansion, 
valid near the leading edge of the plate, and with the 'small parameter' solution 
of Ackerberg & Phillips (1972). All results are in good agreement. Attempts were 
also made to compare the numerical solutions with asymptotic solutions valid far 
downstream once periodicity had been established (Phillips, private communica- 
tion; Pedley 1972). However, the values of x and trequired were so large that the 
calculation was prohibitive in terms of computing machine time and storage. 
Calculations are also made for the case when the fluid velocity near the wall is 
directed upstream. The results indicate that regions of backflow for unsteady 
boundary-layer motions of this type do not cause any apparent singularity in the 
solution at the point of zero skin friction. This observation is in agreement with 
current views regarding separation (Stewartson 1960; Sears & Telionis 1971), and 
it emphasizes the fact that the single condition [a?4a?j],-=o = 0 is not sufficient for 
signalling separation of unsteady flows. 

A unique feature of our technique is the use of a Rayleigh solution, valid at 
some finite distance downstream of the leading edge, to compute the flow field 
when there are regions of backflow. The theoretical basis for this method is 
a generalization of a result of Stewartson (1951) that information regarding the 
existence of the leading edge travels downstream at finite velocity, say thus, 
if t is the time measured from the initiation of the motion, the fluid at stations 
2 > geenfH is unaware of the leading edge and undergoes Rayleigh motion come- 
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sponding to an infinite plate with the imposed velocity ue(f) (see the discussion 
on p. 565). To use this result, the x mesh along the plate is expanded with time so 
that the farthest x station from the leading edge is always situated in the Rayleigh 
flow. When backflow occurs, the downstream flow conditions will be known and 
may be used to influence and compute the upstream flow by modifying the 
finite-difference equations. After some time the number of mesh points in the 
x direction will be quite large, but as periodicity (in time) is established at 
upstream stations, the x mesh can be contracted by moving the initial x station 
downstream, provided that sufficient computer storage is available to retain the 
velocity and shear values at  the new initial station for a full period. The con- 
traction procedure was not used here owing to lack of storage. 

In $2, the problem is non-dimensionalized and formulated mathematically. 
The numerical method and the particular modifications to account for backflow 
are discussed in 9 3. The application to the periodic flow problem is considered. 
in $4. 

2. Mathematical formulation 
Consider the flow of a viscous incompressible fluid over a semi-infinite flat plate. 

The fluid velocity u,,(f) at large distances is a prescribed periodic function of 
time fwith frequency W (see figure l).? The co-ordinate system is chosen with the 
origin located a t  the leading edge and the X axis along the plate with 3 measured 
positively downstream. The axis is normal to the plate and directed into the 
fluid, Two Reynolds numbers may be defined: Re, = VooZ/i7 and Re, = BE/(WV) ,  
where no is the mean velocity, associated with Ve(f ) ,  and defined by 

Here 7 is the kinematic viscosity. Both Re, and Re, are assumed large so that 
the Prandtl boundary-layer equations can be used, except in a small neighbour- 
hood of the leading edge where the Navier-Stokes equations are necessary. 

Denoting dimensional variables by bars, the following non-dimensional 
dependent and independent variables are introduced: 

_ _  

(2.2) 
u = z/.De(f), v = vRe$/(UeUo)*, x = m/Uo0, 
7 = y[Ve(f)/E]*, $ t = fG, u,(t) = Ve(f)/Vo. 

We denote partial differentiation by subscripts and put d Q / d t  = De; the 
boundary-layer equations for conservation of mass and x momentum may be 
written as 

and 

xu,-+yu,+v, = 0 (2.3) 

x[ut + u,1 Oe(U + iyu, - 1) + Quu,] 

+ v,(v - Jvu) U B  - ueu,, = 0. (2.4) 

t Flows for which o,(t) is constant can also be considered a limiting case of a periodic 
flow. It can be shown that in this case 0 will not appear in the solution (see Phillips 1972). 

$ This tmnsformation is not one-one a t  X: = 0 since any > 0 maps onto 7 = m. 
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Potential flow 

FIGURE 1. Flow geometry. 

2. I .  Boundary conditions 

The no-slip condition a t  the wall requires 

u(x,  0, t )  = 0 = w(z, 0, t ) .  (2.5) 

At the edge of the boundary layer the velocity must satisfy 

2.2. Initial conditions 

Initial conditions are required in both x and t. If we put x = 0 in the governing 
equations, we find that for the co-ordinate system used here the equations have 
lost their parabolic character in x and we are not free to impose an arbitrary 
initial condition. Thus, at  x = 0, we require 

u(O,r,t) = Rt(7), (2-7) 

where R(y), the Blasius solution, satisfies 

R”+*RR” = 0, R(0) = 0 = R‘(O), Bt(y)-+l for y-tco. (2.8) 

Primes denote differentiation with respect to 7 and we should note that R(7) is 
a solution of (2.3)-(2.6) when x = 0. 

At t = 0 we require 
u(x ,  7,O) = udx, 7) .  (2.9) 

Initial conditions for w are not necessary since neither derivatives of w with respect 
to x nor t appear in the governing equations. The boundary and initial conditions 
given above are expected to be sufficient to  determine a solution of the equations 
in normal situations. 

2.3. Downstream property of the$ow 

Stewartson (1951) studied the motion of a flat plate, with a sharp leading edge, 
set impulsively into motion with uniform velocity D. He showed that if Bf < 6, 
where Z is the distance measured downstream from the leading edge, the solution 
is independent of the initial condition at 5 = 0. Since this problem is equivalent 
t o  one in which the fluid is impulsively set into motion and the plate is fixed, we 
infer that information concerning the existence of the leading edge passes 
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downstream from the leading edge at the maximum velocity within the boundary 
layer. 

In  the case of periodic boundary-layer flows there are usually times, say tl, 
during which there are overshoots of velocity within the layer where 

However, if we formally extend the well-known maximum principle for linear 
parabolic partial differential equations (see Tikhonov & Samarskii 1963, p. 206) 
to include the present case, we conclude that ;zi < max ue(i!), E E  [0, a), say uenl. 
Thus the solution for Z 2 fueLVz (i.e. x 2 tqM) is independent of conditions at  
5 = 0,  and corresponds to a Rayleigh solution with Oe(f) prescribed, i.e. 

Ti-0 5 -  e+VUvv -- (0  < I <  co, 0 d jj < oo), 
- w ( i j , I )  iz 0, 

~ ( 0 ,  i) = 0,  ~ ( i j ,  f) -+ Oe(f) for ij+ GO. 

This result does not influence the solution when there is no backflow. However, 
it is vital to use this information in the formulation when regions of backflow 
occur, since in that case the last downstream station of the region of integration 
cannot be computed using the numerical technique to be proposed. This will be 
discussed in more detail in 0 3.5. 

with U ( g ,  0 )  prescribed and 

3. Numerical procedure 
3.1. Equations to be integrated 

For large values of x a double boundary layer is expected when the flow at the 
edge of the boundary layer is oscillatory. Thus, a numerical method which allows 
for variable mesh spacing in the y (or 7) direction is desirable to achieve better 
resolution in the boundary layer. Keller & Cebeci (1971) have proposed a second- 
order-accurate implicit technique for steady flows with this feature and it is used 
here with some modifications. 

First, we introduce a new dependent variable w = u,,. This substitution trans- 
forms the boundary-layer equations into the following system of first-order 
partial differential equations : 

xuz - *vw + vlt = 0, (3.1) 

and w-uq= 0. (3.3) 

X [ U . ~ + ( O J Q ) ( U + & ~ W -  ~ ) + U , U U , ] + U , ( Z I - & ~ ~ ) ~ - U , ~ ,  = 0 (3.2) 

The integration will be performed in planes t = constant starting at t = 0, and 
within each t plane along the lines x = constant starting at  x = 0 and proceeding 
downstream. 

3.2. Integration mesh 

Introduce the following grid (see figure 2). Let the index k ( 2  1) denote the 
position along the t axis with k increasing as t increases. The initial conditions 
in t are applied in the plane k = 1. Let the index i denote position along the 
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7 Upper edge of boundary 
layer ( j = J )  

c x 

FIGURE 2. Integration mesh. 

x axis with i = I for the plane x = 0. For each t plane let i = I denote the down- 
stream end of the region of computation. Let the index j denote the position 
along the 7 axis withj = 1 for q = 0 and j  = J for the upper edge of the boundary 
layer. Define the vector (axi, Syj, St,) such that 

(6% ayj, St,) = (Xi, rlj, tr,) - (%I, 7j-1,tk-l). 

For each computation it is necessary to fix the xi and vj arrays a t  the start with 
any desirable variations in Sxi and Sqj. During the course of computation St, may 
be changed at any step and any new xi grid lines, which may be introduced a t  
the downstream end of the grid, may have arbitrary spacing. 

3.3. Numerical integration 

Points at the leading edge ofthe plate (i E I,  I 6 j < J ,  7c 2 1). The initial condition 
in x, equation (2.7), is satisfied by putting 

u(Xi,yj,tJ = R'(7j) (1 < j < J ,  k Z 1) .  

w(x1, 73, t k )  = R"(7j) ( 1  6 j < J ,  k 3 1). 

(3.4) 

The change of dependent variables introduced in Q 3.1 requires that we also 
specify 

(3.5) 

Wall points (i 2 1, j = 1, k > 1). The boundary conditions (2.5) are satisfied 
by putting 

4%,71,tr,) = ?4xi-*,71,4+$ = 0 (i, I t  2 1) .  (3.6) 

Points at the edge of the boundary layer (i 2 I, j = J ,  It > 1). The boundary 
condition (2.6) is satisfied by putting 

u(xi,yJ,  t k )  = 1 (i, k 2 1). (3.7) 
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By using the similarity variable 7, based on the mean flow, the thickness of the 
boundary layer is expected to be nearly constant and (3.7) is sufficiently accurate. 
In  other applications it may be desirable to use an asymptotic expansion in place 
of (3.7) (see Ackerberg & Phillips 1973; Phillips 1972). 

Interior points (i 2 2, 2 < j < J -  1, k > I). To make the computations 
accurate to second order in the mesh spacings, (3.1) and (3.2) are satisfied at 
each intermediate mesh point ( p , q , r )  = ( i - & , j - + , k - + )  and (3.3) at each 
intermediate mesh point (it q, k). Thus, u and w are computed a t  the points 
(iJ, k) while v is computed at the points ( p , j ,  r ) .  A simple average will determine w, 
with second-order accuracy, a t  the points (&j, k). Since two types of situation 
occur, one with backflow, the other without, it is necessary to apply the numerical 
technique differently in each case. This difference, however, will affect only those 
terms in fhe finite-difference equations which arise from a previously computed 
t plane and a notation is introduced to represent these quantities symbolically 
so that we may discuss both situations a t  once. More details will be given in each 
particular case. To approximate velocities and derivatives in (3.1)-(3.3), we 

(3.8~) 

(3.8b) 

(3.8~) 

(3.8d) 

(3.8 e) 

(3.8f) 

( 3 3 d  
(3 .8h)  

(3.8;) 

and the notation is such that the terms L, represent quantities which are known 
or have already been computed, while the terms u ~ , ~ , ~ ,  w ~ , ~ , ~ ,  shown 
explicitly, are unknowns in the new time step. 

After substituting (3.8) into (3.1)-(3.3) and combining these equations with 
(3.6) and (3.7), we shall have 3J equations, which are denoted by E3J, in 3J 
unknowns ((u, 21, w ) ~ ,  j E [I, J ] } .  These equations are nonlinear and their solution 
is obtained by Newton’s method. 
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3.4. Solution of the equations 

Newton’s method, used in solving EaJ, was found to be more accurate and at 
least as fast as the predictor-corrector fixed-point method which was tried 
initially. The rate of convergence of the Newton technique is of O(e2”),  where e is 
the initial difference between the true solution and the assumed solution, and 
k the number of iterations, while for the predictor-corrector fixed-point method, 
it is of O(e). Thus, a solution of the nonlinear algebraic equations could be 
obtained with relatively few (usually 3 or 4) iterations. Some numerical experi- 
ments were performed using both methods and it was found that after 20 
iterations only 6 or 7 digits were accurate using the predictor-corrector method, 
while the Newton technique gave 10 digits after 3 or 4 iterations, provided that 
a good initial guess was used. It should be noted that the amount of computation 
required for one iteration of each method is the same, the main difference being 
the amount of preliminary algebra required for the Newton technique, which is 
more than that for the predictor-corrector method. 

Introduce the following notation, which suppresses indices which are not 
essential during the iterations: 

= ui, j, k ,  5 = u p ,  j, 7 9  8 = wi, j, k -  

Let s denote the iterate and define the following iteration procedure: 

( u, v, W)j  = ( u y +  SU,, 11;-1+ 86, wy+ SF). (3.9) 

The ( U ,  P, W ) j  are expressed in terms of the iterates as 

(U, 8, W)j = lim ( U ,  V ,  77);. 
{SU, 8V, 8W}pO 

Substitute (3.9) into E,, and retain first-order terms to O(SU,SV,SW)j  to 

( 3 . 1 0 ~ )  

(3. lob) 

(3.10 c) 

where 2 < j  6 J ;  the coefficients of ( ~ U , C Y V ~ ~ W ) ~ ,  which depend on known 
quantities are given in Phillips (1972). 

obtain the following equations: 

qq + a%.-,) + Qj(85 - 86-1) +Bj(8Kj + 8y-J = q7 
Aj(SU, +SU,-,) +Bj(SJ$+S&J +CjSV$++jS~L, = E.j, 

- SUj-1) + G(Sy + Sy-1) = Hj, 

As a result of (3.6) and (3.7), we require 

su, = sv, = su, = 0. (3.11) 

Equations (3.10) and (3.11) represent 3J equations in the 3J unknowns 
(dU, 811, C ~ W ) ~ ,  1 < j < J, and may be written in block matrix form (see Isaacson 
& Keller 1966, p. 58), but are more easily solved if we retain the algebraic 
notation. The system of equations is similar to the one studied by Ackerberg & 
Phillips (1972) and may be inverted by an efficient algorithm to be described 
below. First, we eliminate 8y. from (3.10) by the following steps. 

(i) Rewrite (3.10a,b,c) with j replaced by j +  1. Denote the result by 
(3.10u,b,c)‘. (ii) Solve ( 3 . 1 0 ~ )  to obtain an equation for &T., denoted by (A) .  
(iii) Solve (3. IOc)’ to obtain an equation for 6T$$+,, denoted by (B) .  (iv) Combining 
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( A )  with (3.10b) to eliminate Sy. yields an equation for 8lTPl, denoted by (C). 
(v) Combine ( A ) ,  (B) ,  (C), (3.10~1,)' and (3.10b)'to eliminate Jy.-l, ST., JT.+, and 

A ~ S ~ . , + B ~ S ~ + C ~ S ~ + , + D ~ S ~ + E ( i S ~ ~ ,  = B'i for 2 < j  B J-1. (3.12) 

(vi) Combine (C) with ( A )  to eliminate Sy and SW,, from (3.10 (1) and we obtain 
the equation 

(3.13) 

Considering (3.11), (3.12) and (3.13), we have 2J equations in 2J  unknowns 

8Uj=~~j6q-1+pjST$-1+y.j (2 < j  Q J ) ,  (3.14) 

and we obtain the equation 

Pi SU;, + Q; 8U;,-l + 12;(8T$ - a?-,) = Si 

The coefficients in (3.12) and (3.13) are given in Phillips (1872). 

which may be solved using the algorithm 

for 2 < j < J .  

and (3.13) rewritten in the form 

ST$ = 8YWl + (B;)-' (Ti. - Qi SIJ-l - P; Sq) (2 < j < J ) .  (3.15) 

Here aj = [ - A ; +  (R;)-l&;(c~y~+l+D~)J~-l ,  (3.163) 

pj = [F; - c;pj+l- (R;)-ls;(D; + c; yj+l)] 9-1, (3.16 b) 

y j  = - [c; yj+l + 0;. + Ei] 9-1, ( 3 . 1 6 ~ )  

9 = B; + c; (3.16 d )  - @;)-I Pi( c; yj+ 1 + B;) ,  

for 2 < j  < J - 1 .  
The procedure may be started using (3.11) and choosing 

aJ = pJ = YJ = 0. (3.17) 

We then solve for the coefficients ai, p, and yi recursively, checking at each step 
that 9 + 0. If 23 = 0, then the set of equations might be singular, but it is more 
likely that they can be rearranged to eliminate such a zero in the denominator. 
With the coefficients known, Sq and 86 may be found using (3.14) and (3.15) 
recursively, starting with values given by (3.11). SW, is next determined by 
writing (3.10 b) and (3.10 c) f o r j  = 2 and eliminating SW,. Finally, SF, 2 < j < J ,  
is determined using ( 3 . 1 0 ~ ) .  

The complete solution procedure is carried out in the plane t = constant with 
the ( U ,  V ,  W ) ,  computed in succession along the lines i = constant starting a t  
i = 2 and proceeding to i = I (note that the initial condition in x is prescribed 
along i = 1). Once an entire t plane is known, the next t plane can be computed, 
and the computation continued ad infiniturn unless some difficulty develops, 
e.g. backflow. 

As initial estimates for ( U ,  V ,  W ) ,  we used 

uq = ug, j, k-1 ( 1  B j < J ) ,  ( 3 . 1 8 ~ )  

(3.18b) 

and 
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FIGURE 3. Computational flow chart. 

The Newton iteration was stopped when 

p q q ,  pqvg, IS&/Iq < 6 (1 <j 6 J ) ,  (3.19) 

where 6 is a small number (here 6 = 0.1 x 10-lo). The solution procedure is 
outlined in figure 3. 

Since a set of quadratic equations must be solved to determine the ( U ,  V ,  W)j, 
a real unique solution is not guaranteed. When backflow is possible, it has been 
shown by Ackerberg (1965, p. 70) that, for the steady viscous flow inside a cone, 
two solutions of the boundary-layer equations are possible, one of which is 
rejected on physical grounds. The basis for assuming that the correct solution 
is obtained by the method proposed here is that flow quantities vary continuously 
from one station to the next. Moreover, when the initial values for ( U ,  V ,  W): 
were varied considerably, the same final results were obtained. 
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In an effort to reduce the number of iterations needed to solve the nonlinear 
equations, several initial guesses, other than (3.18), were used (Phillips 1972). 
However, these methods failed to reduce the number of iterations for the desired 
accuracy and were discarded since they involved more computation. 

The numerical technique and computer programs were checked for their 
accuracy by solving the impulsively started flat-plate problem previously con- 
sidered by Hall (1969 a )  and Dennis (1972), who used methods differing from that 
presented here. Our results were found to be in excellent agreement with theirs 
(Phillips 1972). 

3.5. The terms L, ( s  = 1-5) 

N o  backjiow. During part of the computation the boundary-layer flow is directed 
entirely downstream, with no backflow, and Ghe finite-difference procedure is 
straightforward. In these cases we introduce the following second-order-accurate 
difference approximations in the known time plane (t - St) : 

(3.20a) - 1  
u p ,  q, k-1 - &i, j ,  k-l+ ui, j-1, k-l + ui-1, j, k-l+ ui-1, j-1, k - l L  

with a similar expression for wp, q, k-l, 

( u z ) p ,  q, k-1 = (2SxQ)-1 (ui, j, k-1 + ui, j-1, ]c-1- u$-l, j ,  k-1- ui-l, j-1, k-1) 

(3.2Ob) 

( 3 . 2 0 ~ )  

Using (3.20), L, (s = 1-5) can be evaluated in (3.8), thus determining each term 
in the finitdifference equations (3.10). Note that data from the i and i- 1 grid 
lines in the t - 6t plane are required. 

Backjiow. With particles moving upstream, a finite-difference procedure 
should be used which allows particles flowing backwards to influence the flow 
upstream. To accomplish this the following difference approximation is used in 
the known time plane (t - St) which involves the i - 1, i and i + 1 grid lines when 
the i grid line is computed in the new time plane: 

and (wv)p, q, k-1 = (2Svj)-1 (wi, j, k - 1 -  wi, j-1, k-l+ wd-l, j, k-1- wi-l, j-1, k-1). 

where sp ,q ,  k-1 (u, uz, w, w ~ ) p ,  q, k-1. 

The values  AS',,^,,, appearing on the right-hand side of (3.21) are evaluated 
using (3.20). This technique permits particles along x6+1 a t  t - 6t to influence the 
flow at xi at t .  Care must be taken that 6t is sufficiently small so that particles 
along 

I%+1- xi-11 ' I mjn (%+l, j ,  k -4) x % I  (3.22) 

If (3.22) is violated, St, must be reduced sufficiently so that it holds. However, 
even if (3.22) holds, there is no guarantee thatl difficulty with the solution will 
be avoided. It would not be possible to compute flow quantities along the line 

This is not a simple average of 
@, L-l  since we must account 

for the uneven mesh spacing in the z grid. 

at t - St do not influence the flow along at t .  This requires 

3 

o, L-l and 
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i = I by this method without knowledge of the flow for x > xI. It is fortunate, 
therefore, that the physics of the problem (see 52.3) allows us to know the 
solution for x 2 tUeM. Thus, the integration mesh is constantly expanded in the 
x direction so as to maintain xI > t ,  UeA,f. It should be mentioned that, although 
the accuracy of the computation during the transient state could not be verified 
when there was backflow, the knowledge of the flow for x > tqM allowed the 
computation to achieve the final periodic flow. Without a downstream condition, 
it was impossible to continue the numerical integration into a region of backflow 
owing to large oscillations. 

Near the leading edge where backflow did not occur, this special method is not 
necessary and the finite-difference equations (3.20) may be used. Thus, depending 
on whether or not there is backflow, we use (3.21) or (3.20) to determine the 
quantities L,, s = 1-5, in (3.8). This fully specifies the fhite-difference method. 

4. Periodic flow over a flat plate 

The governing equations are (2.3) and (2.4) with 

4.1. Formulation of the problem 

U,(t) = i+Asin t  and U,, = l + A .  

The boundary conditions in 7 and initial conditions in x are given by (2.5)-(2.7). 
We are interested in the periodic flow which evolves for t - t co .  The problem was 
solved using two sets of initial conditions a t  t = 0, to illustrate that the final 
periodic flow is unique and does not depend on initial conditions. Here we give 
the initial condition used most often in our computations. 

For t = 0- , we assume the flow is strictly periodic and corresponds to that 
over an infinite flat plate with U, = A sin t.? The problem is started by assuming 
that, in going from t = 0- to t = O + ,  we impulsively change from U, = Asint 
to U, = 1 + A  sin t and introduce the leading-edge condition (2.7); the velocity at  
all points > 0 will increase by unity and the initial condition (2.9) will be 

uo(x, 7)  = u,,(E) = 1 + A  e-6 sin E for 7 > 0, (4.1) 

where 6 = ?j[a/2D]*. From $2.3 we have that, for x 2 tq,, the solution is 
independent of initial conditions at x = 0, and the problem represents the 
transient flow over an infinite flat plate with &(t) = 1 + A  sint, subject to (2.5), 
(2.6) and (2.9) with uo given by (4.1). This solution, which is a function of ij and t, 
is expressed in terms of (x, 7, t )  as 

= U;l{erf [ + q ( x / q t ) * ]  +A[sin t - e-[sin (t- ()I}, (4.2) 

where = 7(x/2U,)*.  

t Other flows may be assumed for t = 0- (see Phillips 1972). 
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4.2. Asymptotic solution for small x 

We seek a power-series expansion for small x. Our development follows the work 
of Moore (1951) except that here A is not assumed small. Introduce a stream 
function P(x, 7, t )  such that 

U. = l$, v = &rFq - F) - xPz. (4.3) 

We assume an expansion of the form 

m 

n=O 
p = x .“f,(V’ t ) .  (4.4) 

After substituting (4.4) in (2.4), we find that the first few f ,  may be written as 

f o  = R(v), (4.5) 

f i (7 ,  t )  = U,2 Oegl(7) (4.6) 

and f 2 ( ~ , t )  = u~~ ueg2,1(7) + ( U l 2  Oe1292, ~ 7 ) .  (4.7) 

9:‘ + +Rd - R’g; + +R”g1= R’ + &@“ - 1, 

g g  1 + BRg;, 1 - 2R’gL, 1 + ;R’’g,l= g; 

Here R(7) is the Blasius solution and the g’s are solutions of the boundary-value 
problems 

(4.8) 

(4.9) 

and 

subject to the boundary conditions 

g l  2 + &Rg:, 2 - 2R‘gi, 2 + $Rf’g2,p. = [g; - #g: - 11 g; + i r g :  (4.10) 

g(0)  = g’(0)  = 0 (4.11) 

and g’(y)+O for q+co. (4.12) 

The method of finding numerical solutions is that used by Moore (1951) to solve 
similar equations. The numerical values for the second derivatives at  the wall are 

g;(O) = 0.332057, g l , l ( O )  = 0.848522, g ; , 2 ( 0 )  = -0,469687. 

The expansion for small x may finally be written as 

F(x,  7, t )  = R(r) +xu;2  dT,gl(r) +x2[u;30eg2,1(r) + (u;2 Oe)2rr2,2(7)1 + o ( x 3 ) .  
(4.13) 

To obtain accurate results, the range over which x is allowed to vary in (4.13) 
should be restricted owing to the appearance of inverse powers of U,. The largest 
coefficient of the xn term is U i Z n ,  and to be certain that successive terms form 
a decreasing sequence, we require 

x < min (Uz). 

4.3. Results 

As an additional check on our numerical method and computer routines, a com- 
parison was made with the ‘small parameter’ solution, which also required a 
numerical integration (see Ackerberg & Phillips 1972). Our computations were 
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5 &X r t n (st = 2n/n) 

0.0 < z < 0.2 0.1 0.0 < 7 < 0.2 0.05 o < t < + n  96 

0.5 < x < 1.0 0.25 1.0 < 7 0.5 
1.0 < x 0.75 __ 

0.2 < x < 0.5 0.15 0.2 < 7 < 1.0 0.1 Qn < 1 12 
- - 

- - - 

TABLE 1. Integration meshes used in computations for A = 0.1. 

0.50 

0.45 

0.40 

0.35 

( u ? ) ~ ~  0.30 

0.25 

0.20 

0.15 

0.10 I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 

T 

FIGURE 4. (u& 21s. T during third period, for A = 0.1. -, numerical results; 
--- , small parameter solution; 0, co-ordinate expansion for small x. 

performed for A = 0.1 with an integration mesh that is described in table 1. 
A plot of u,,llr=,, = ( u ~ ) ~  'us. T', the fraction of a period, is presented in figure 4 for 
the third period of computation. The results of the co-ordinate expansion, valid 
for small x, are also shown for x = 0-2. All results are in close agreement, and the 
maximum pointwise difference in ( u ~ ) ~  between the numerical solution and the 
'small parameter ' solution is 3 yo, which is smaller than the nominal accuracy 
of the numerical technique. 

For runs at larger values of A ,  for which backflow occurs within the computa- 
tion grid, it  was necessary to vary 6t during the computation. If St was chosen to 
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0.6 

0.4 

.X = 0.3 

T 
FIGURE 5. (u&, us. T during fourth period, for A = 0.3. -, numerical results; 
0, co-ordinate expansion for small 2; 0, numerical results for previous period. 

just satisfy (3.22), it did not seem possible to obtain accurate results. It was 
necessary to reduce St considerably a t  the onset of backflow to prevent numerical 
oscillations which would otherwise appear in the solution and persist during the 
remainder of the computation. The amplitude of these oscillations increased with 
time until they were so large that Newton’s iteration procedure would not con- 
verge after twenty iterations. If, however, 6t was reduced, the oscillations 
disappeared in nearly all cases. 

In  figures 5-7, we show the results for a computation with A = 0.3. The 
integration mesh is described in table 2. A variable 7 mesh size was used to 
achieve better resolution in the region of backflow, which was close to the wall. 
The integrations were carried to 49 periods with a total running time of 352s 
on the CDC 6600. 

A plot of (u& vs. T is shown in figure 5, with x represented parametrically. 
The results are for the fourth period of computation, with the third-period results 
indicated by squares t o  display the degree to which periodicity had been estab- 
lished. The difference in the values of ( u ~ ) ~ ,  for the two periods, is well below the 
nominal accuracy of the numerical method. The results from the co-ordinate 
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-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 

zc 

FIGURE 6. u w8. 7; x = 5.5, A = 0.3. T is a parameter and the results are for 
the fourth period. 

ZI 

FIGURE 7. w V.S. q ;  x = 5.125, T = 0.6345, during fourth period, for A = 0.3. 
0, results for previous period. 
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X 6X 11 811 t 9, 

0.1 < x < 0.3 0.2 0.1 < < 0.3 0.05 + n < t < n  12 
0.3 < x < 0.4 0.1 0.3 < 7 < 1.0 0.1 n < t < 2 n  48 
0.4 < x < 0.5 0.05 1.0 < 7 0.5 2n < t < 3n 12 
0.5 < z < 1.0 0.25 - 
1.0 < 2 0.15 

0.0 < m < 0.1 0.1 0.0 < 7 < 0.1 0.025 O < t < & n  96 

- 3n < t < 4n 48 
4n < t < 5n 12 
5n < t < 6n 48 
6n < t < 7n 24 
In < t < 8n 96 
8n < t < 9n 24 
977 < t 96 

- - 

TABLE 2. Integration meshes used in computations for A = 0.3. 

T 

FIGURE 8. (uJW vs. T ; z = 5.5,  A = 0.3: the approach of the solution to its h a 1  periodic 
state. 0, results for period 4. 
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expansion are indicated by circles for x = 0.3, and the agreement is again close. 
The largest difference occurrednear T = 0.75, which corresponds to the minimum 
value of U, and for which the neglected terms in (4.24) will be largest. Velocity 
profiles at  x = 5.5 are displayed in figure 6 for quarter periods and for T = 0.645, 
which is the fraction of a period when maximum backflow is observed. A plot of 
v us. 7 is presented in figure 7, for T = 0.6354 and x = 5.125. The v velocities are 
small in the region of backflow with the maximum value of about 0.8 occurring 
at  the edge of the boundary layer. This seems to indicate that points of zero skin 
friction and regions of backflow for unsteady flow do not necessarily lead to any 
singular behaviour , 

Figure 8, a plot of (uJW us. T for the first four periods for A = 0.3 and x = 5.5, 
shows the transient approach of the solution to the final periodic state. It was 
found that the important criteria for the attainment of a periodic solution at 
a specific station, say xo, is that (tUo/xo) N 5 .  For x = 5.5 this is satisfied during 
the fifth period of computation. It is uncertain whether the transient solution 
displayed is accurate because we were unable to duplicate the transient results 
with any degree of satisfaction. 

For these computations Richardson’s extrapolation was not useful because, 
owing to the large computation times that would be involved, two runs could not 
be performed so that the extrapolated solution would be more accurate than the 
single most accurate run. 

This paper was taken from a dissertation submitted to the Faculty of the 
Polytechnic Institute of Brooklyn in partial fulfilment of the requirements for 
the Ph.D. degree in Aeronautics and Astronautics (1972). Special thanks are due 
to the National Aeronautics and Space Administration for support given under 
the NASA Predoctoral Traineeship Program, and to the U.S. Army Research 
Office, Durham, under Grant no. DA-ARO-D-31-124-71-G68. 
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